Black Box Recursive Translations for Molecular Optimization
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*We propose a new inference method for molecular optimization called Black -We apply recursive Penalized logP QED
Box Recursive Translation (BBRT). translation to both Method Ist ond 3rd Ist ond 3rd
Score
*When generated molecules are iteratively fed back into the translator, Eequgr;ce- e:ntc'i graph- ZINC-250K 452 430 423 0948 0948 0948
properties improve with each step -- this finding is invariant to the choice of sample/ | © | Top ased transiation ORGAN 363 349 344 089 0824 0.820
model b models and report top 3 JT-VAE 530 493 449 0925 0911 0910
) 0 —|  BlackBoxTransiator F=n property scores on GCPN 798 785 7.80 0948 0.947 0.946
. - . ' ¢ I penalized logP and JINN 597 496 471 0948 0.948 0.948
BBRT demonstrates !'esullts competm've with state-of—thg-art for propgdy | | QED optimization tasks Seq2Seq 465 453 449 09048 0048 0948
optimization tasks using simple drop-in replacements with well-established | | . .
models o = against baseline BBRT-JTNN 1013 10.10 991 0948 0.948 0.948
’ models. BBRT-Seq2Seq  6.74 647 642 0948 0948 0.948
» We show BBRT generates samples with better properties relative to its non-
recursive peers e?cross differentpdecoding strateZiez and is highly interpretable » We find stochastic decoding methods outperformed deterministic methods on average logP scores and average pairwise diversity
for generated compounds as a function of recursive iteration.

Top 100 logP
Motivation * We report top 100 logP s = Top 0 vy
generated compounds under 8T seqzseq
both BBRT models, and non- g
Molecular optimization as a translation problem. As in [1], we learn a mapping between sequence pairs (x,y) € (X,Y) with recursive counterparts (left H
high chemical similarity, and where y scores higher on a prespecified property compared to x. and center) as well as 3
diversity of top 100 §
» We utilize Seq2Seq with an encoder-decoder framework [2] , which learns parameters 6 that estimate a conditional probability generated compounds and
model P(y|x, ). 6 is estimated by maximizing the log likelihood: training set (right).
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(VXY *» Top scoring compounds for logP and QED under both BBRT < BBRT generates interpretable paths of optimization (left) that

models below; for logP, BBRT-JTNN produces compounds facilitate understanding of design trade-offs We highlight

with higher property values and BBRT-Seq2Seq generates alternative translations for compound (2) below (right):

compounds with a richer molecular vocabulary.

*We explore both deterministic (beam search) and stochastic decoding strategies that sample from the model at generation time,
¥t ~ qWely<e. x, pa)-

» We consider a top-k sampler [3] which restricts sampling to the k-most probable tokens at time-step t: a subset of vocabulary
U c V where U maximizes Xyey po (Ve |yy<e x): Penalized logP
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* We recursively infer new sequences, where {yik}k=1|s a Penalized logP: Choose compound with max. logP value
set of K outputs generated from p(y;|x) ati = 0.
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QED. Choose compound with max. QED value.
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