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Function-guided protein design by deep manifold sampling
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Deep Manifold Sampler Experiments
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e DAE estimates structure of data-generating density by -
denoising stochastically-corrupted training examples
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the length difference between original and corrupted input Scores sequences with approx. same length as seed sequences B-protein sequence by conditioning on “ion
sequences (folded with trRosetta [12]) transmembrane transporter activity” function label
e Adaptive length t.ran.sform [7] | e (1a) We diversify a cutinase sequence by conditioning on “cutinase activity” (2) Recovery of metal-binding sites after ablation of known e Sequence folded by trRosetta [12] and function
° Non—.autoreg.r.esswe inference procedur-e makes changes in GO term and generate sequences with preserved catalytic residues and CaZ* binding residues from a calcium-binding protein confirmed by an external function classifier (FFPred3)
multiple positions of a target sequence in parallel higher scores for “cutinase activity” (computed by DeepFRI [5])
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