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● The deep manifold sampler [1] consists of a denoising autoencoder (DAE) [2] that learns a manifold of 
protein sequences in a self-supervised manner and where sampling is done by iteratively denoising a 
sequence while exploiting the gradients from the function predictor.

● We introduce an approach called multi-segment preserving sampling which enables the inclusion of 
domain-specific knowledge by designating preserved and non-preserved segments along the input sequence, 
thereby restricting variation to only regions outside of the preserved segments.

Experiments

Motivation
● Deep generative modeling for biological sequences presents challenges in reconciling the bias-variance 

trade-off between explicit biological insight and model flexibility.
● The deep manifold sampler was recently proposed as a means to iteratively sample variable-length protein 

sequences [1].
● For protein design, domain knowledge is often used to constrain combinatorial search space [2, 3]. 
● Significant challenges exist in explicitly incorporating this existing knowledge in an end-to-end learning and 

sampling procedure.
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Illustrating multi-segment preserving sampling.  (A) Non-preserved segments      are corrupted using corruption process     , for which a 
given token (yellow) may be randomly perturbed (blue). This is encoded as hidden vector set                                    . The length change 
predictor                  takes in pooled, single-vector representation     and is trained to output                             , which is distributed across     
proportional to their original lengths (Eq. 1). 

● (B) During the adaptive length conversion [5, 6], hyperparameter                 modulates the strength of the carry-over of hidden vectors. For 
example, when            , we maintain the original hidden vector       as part of the conversion into hidden sequence     (Eq 2). The designated 
preserved-segment set     (red) remains unaltered throughout and is preserved during sampling.  

● Non-autoregressive decoding [1, 5, 6, 7] yields a categorical distribution for a preserved segment’s token, assigning entire probability mass 
to the original token’s identity (Eq 3.) and forcing the sampled outcome to preserve the token identity:

“Residue-preserving sampling” of IGHV1-18. All unique human antibody sequences with the IGHV1-18 gene from the 
Observed Antibody Space [8] were used to sample exclusively from the CDR3 region using a deep manifold sampler     
while preserving all other residues, including framework regions. 

● Training and sample distributions for CDR3 lengths (top left) were similar, with a moderate increase in sample diversity.
● Likewise, both distributions of normalized GPT-2 scores (top right) showed overlapping support and invariance to     .
● Mean of edit distance distributions between samples and seed sequences increases slightly with higher values of     

(bottom left); examples of aligned samples of CDR3 sequences under different settings of      (bottom right). 
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