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e Deep generative modeling for biological sequences presents challenges in reconciling the bias-variance o Q"(:;) e The deep manifold sampler [1] consists of a denoising autoencoder (DAE) [2] that learns a manifold of

trade-off betwgen explicit biological insight and model flexibility. . . . . . z protein sequences in a self-supervised manner and where sampling is done by iteratively denoising a
e The deep me11n|fold sampler was recently proposed as a means to iteratively sample variable-length protein v —t PWW)MM sequence while exploiting the gradients from the function predictor.

sequencgs 11 . . . . . . predictor P féi‘éiifi:’f;;tes_ ‘_ZT:;EL?; e We introduce an approach called multi-segment preserving sampling which enables the inclusion of
° F9r Protem design, doma!n k.nowle.dg.e '? often usgd to C.OI‘\S’II.I’aI.n combmatonegl search space [2, 3], . domain-specific knowledge by designating preserved and non-preserved segments along the input sequence,
e Significant challenges exist in explicitly incorporating this existing knowledge in an end-to-end learning and BED thereby restricting variation to only regions outside of the preserved segments

sampling procedure. desoder

Multi-segment preserving sampling Experiments
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“Residue-preserving sampling” of IGHV1-18. All unique human antibody sequences with the IGHV7-718 gene from the

g — Observed Antibody Space [8] were used to sample exclusively from the CDR3 region using a deep manifold sampler

[VIQICI I I 1 I I I I I I I IWJ F R] [VIQICIAIRI GIDI| IPIRIDIMIDI\/, L i R] while preserving all other residues, including framework regions.

e Training and sample distributions for CDR3 lengths (top left) were similar, with a moderate increase in sample diversity.

e Likewise, both distributions of normalized GPT-2 scores (top right) showed overlapping support and invariance to 8.

e Mean of edit distance distributions between samples and seed sequences increases slightly with higher values of g
(bottom left); examples of aligned samples of CDR3 sequences under different settings of 3 (bottom right).
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lllustrating multi-segment preserving sampling. (A) Non-preserved segments s are corrupted using corruption process C, for which a
given token ( ) may be randomly perturbed (blue). This is encoded as hidden vector set h = (hq, ho, ..., hz ). The length change
predictor ps(Al|h) takes in pooled, single-vector representation h and is trained to output Al* = |%| — |z|, which is distributed across s
proportional to their original lengths (Eq. 1).

e (B) During the adaptive length conversion [5, 6], hyperparameter 8 € [0,1] modulates the strength of the carry-over of hidden vectors. For -
example, when 3 = 1, we maintain the original hidden vector h; as part of the conversion into hidden sequence 2z (Eq 2). The designated 20+ — e B Aligned CDR3 sequence Edit distance
O =3 0.0
preserved-segmefnt set s (.red) remains ur.1altered throug.hout f':md. s Preserved during sampling. | o | 3 : = N/A (original) | ARDPEWDPF—QANY—YYYGMDV 0
e Non-autoregressive decoding [1, 5, 6, 7] yields a categorical distribution for a preserved segment’s token, assigning entire probability mass 5 0.0 ARDPEWDPF-QAN--YYYGMDV 3
to the original token's identity (Eq 3.) and forcing the sampled outcome to preserve the token identity: £ 10- 0.1 ARDPEWDPFFQANYNYYYGMVD 3
3 0.5 KRDPEWDREF-QAPY-YTVGMDV 5
0, ift € 0(8) and v = Tp-1(y) 5 0.9 ARGPECDPH-QAV-DIYYGMDV 6
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